Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 14(24)2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34947311

RESUMO

Alkali-activated concrete (AAC) could be a solution to use a cement-less binder and recycled materials for producing concrete reducing the carbon dioxide emission and the demand for raw materials, respectively. In addition to the environmental aspect, AACs can achieve mechanical characteristics higher than those of ordinary Portland concrete (OPC) but also an improvement of the thermal insulation capacity. Despite the positive results available in the scientific literature, the use of AACs in construction practice is still limited mainly due to the absence of codification for the mix design and consequently of specific design rules. In this paper, AAC produced by ground-granulated blast-furnace slag (GGBFS) and silica fume is investigated for the production of structural elements and to discuss the reliability of formulations for evaluating mechanical properties, necessary for structural design. The mechanical strengths (compression strength, tensile strength, flexural strength) are evaluated by experimental tests according to different curing times (7, 14, 28, 90 days) in ambient conditions and the thermal conductivity is measured to understand the effect that the material could have on thermal losses for a sustainable building perspective. The results showed that AAC strengths depend on the curing time and the exposure conditions, and the insulation properties can be improved compared to the traditional Portland cement with the proposed composition.

2.
Materials (Basel) ; 14(4)2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33673328

RESUMO

The use of renewable and natural materials characterized by the low environmental impact is nowadays a key issue for the sustainable development of the construction industry. For this reason, the interest for natural fibers, to be used as reinforcement in composites as an alternative to other fibers, is continuously growing. In this paper, the use of hemp for reinforcing lime mortar used as plaster is considered with a multidisciplinary approach, taking into consideration the structural and thermal performance. Natural fibers have several advantages compared to industrial ones, such as low cost, low environmental impact, biodegradability, renewable nature. Moreover, these can show remarkable mechanical performance in relation to specific weight, and sometimes, as in the case of hemp fibers, these can improve the thermal insulation capacity of the plaster. However, the experimental results on the mechanical features are still lacking, especially to assess their durability, and the variability of thermal parameters with the mechanical characteristics. Therefore, this paper proposes an experimental program, developed at Laboratory of Materials and Structures (LAMAS) of the University of Sannio (Italy), aimed at investigating the main mechanical properties (compression strength, flexural strength) of lime mortar reinforced by hemp fibers and subjected to various environmental exposures and aging processes. The characterization is completed with the measurement for the produced samples of the thermal conductivity by means of the standardized guarded hot plate technique.

3.
Energy Build ; 230: 110533, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33052169

RESUMO

The proposed investigation is aimed at providing useful suggestions and guidelines for the renovation of educational buildings, in order to do University classrooms safe and sustainable indoor places, with respect to the 2020 SARS-CoV-2 global pandemic. Classrooms and common spaces have to be thought again, for a new "in-presence" life, after the recent worldwide emergency following the spring 2020 pandemic diffusion of COVID-19. In this paper, starting from a real case study, and thus the architectural and technological refurbishment of an Italian University building (Campobasso, South Italy, cold climate), with the aims of improving the classrooms' quality and safety, a comprehensive approach for the retrofit design is proposed. By taking into account the necessary come back to classrooms starting, hopefully, from the next months (Autumn 2020), experimental studies (monitoring and investigations of the current energy performances) are followed by the coupling of different numerical methods of investigations, and thus building performance simulations, under transient conditions of heat transfer, and computational fluid dynamics studies, to evidence criticalities and potentialities to designers involved in the re-thinking of indoor spaces hosting multiple persons, with quite high occupancy patterns. Both energy impacts, in terms of monthly and annual increase of energy demands due to higher mechanical ventilation, and indoor distribution of microclimatic parameters (i.e., temperature, airspeed, age of air) are here investigated, by proposing new scenarios and evidencing the usefulness of HVAC systems, equipment (e.g., sensible heat recovery, without flows' contamination) and suitability of some strategies for the air distribution systems (ceiling squared and linear slot diffusers) compared to traditional ones.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...